题目内容

已知曲线C:y=4xCn:y=4x+n(n∈N*),从C上的点Qn(xn,yn)作x轴的垂线,交Cn于Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xnbn=
yn+1
yn

(1)求数列{xn}的通项公式;
(2)记cn=
4
anbn
,数列{cn}的前n项和为Sn,试比较Sn
37
32
的大小(n∈N*);
(3)记dn=
5n
2n+2×(bn-1)
,数列{dn}的前n项和为Tn,试证明:(2n-1)•dn≤T2n-1
分析:(1)依题意点Pn的坐标为(xn,yn-1),从而得到yn+1=4xn+n=4xn+1,xn+1=xn+n,由此能求出数列{xn}的通项公式.
(2)由an=n,bn=4ncn=
1
n•4n-1
,知S1=1<
37
32
S2=1+
1
8
=
9
8
37
32
S3=1+
1
8
+
1
48
=
55
48
37
32
,当n>3时,Sn=
1
1
+
1
2×4
+
1
42
+…+
1
4n-1
<1+
1
2×4
+
1
42
+
1
43
+…+
1
4n-1
37
32

(3)当n≥2,k=1,2,…,2n-1时,有dk+d2n-k=
3
4
×[
5k
2k×(4k -1)
+
52n-k
22n-k×(42n-k-1)
]
5n
2n+2
1
42k-4k-42n-k+1
0,由此能够推导出对任意的n∈N*,都有(2n-1)•dn≤T2n-1
解答:解:(1)依题意点Pn的坐标为(xn,yn-1),
yn+1=4xn+n=4xn+1
∴xn+1=xn+n,
∴xn=xn-1+n-1
=xn-2+(n-2)+(n-1)
=…=x1+1+2+…+(n-1)
=
n(n-1)
2
+1

(2)由(1)知,an=n,bn=4n
cn=
1
n•4n-1

S1=1<
37
32
S2=1+
1
8
=
9
8
37
32

S3=1+
1
8
+
1
48
=
55
48
37
32

∴当n>3时,Sn=
1
1
+
1
2×4
+
1
42
+…+
1
4n-1

<1+
1
2×4
+
1
42
+
1
43
+…+
1
4n-1

=1+
1
8
+
1
3
×
1
42
×(1-
1
4n-2
)
1-
1
4

=
9
8
+
1
36
-
1
4n-1
37
32

(3)当n≥2,k=1,2,…,2n-1时,有:
dk+d2n-k=
3
4
×[
5k
2k×(4k -1)
+
52n-k
22n-k×(42n-k-1)
]

3
4
×2
5k
2k×(4k-1)
×
52n-k
22n-k×(42n-k-1)

=
3×2×5n
2n
1
(4k-1)(42n-k-1)

=
5n
2n+2
1
42k-4k-42n-k+1

又∵4k+42n-k≥2×4n
∴42n-4k-42n-k+1≤42n-2×4n+1=(4n-1)2
dk+d2n-k
5n
2n+2
×
1
4n-1
=2dn

T2n-1
1
2
×(2n-1)×2dn
=(2n-1)dn
∴对任意的n∈N*,都有(2n-1)•dn≤T2n-1
点评:本题考查数列的通项公式的求法,考查两个数大小的比较,考查不等式的证明,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网