题目内容
已知曲线C:y=4x,Cn:y=4x+n(n∈N*),从C上的点Qn(xn,yn)作x轴的垂线,交Cn于Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xn,bn=
.
(1)求数列{xn}的通项公式;
(2)记cn=
,数列{cn}的前n项和为Sn,试比较Sn与
的大小(n∈N*);
(3)记dn=
,数列{dn}的前n项和为Tn,试证明:(2n-1)•dn≤T2n-1.
| yn+1 |
| yn |
(1)求数列{xn}的通项公式;
(2)记cn=
| 4 |
| anbn |
| 37 |
| 32 |
(3)记dn=
| 3×5n |
| 2n+2×(bn-1) |
分析:(1)依题意点Pn的坐标为(xn,yn-1),从而得到yn+1=4xn+n=4xn+1,xn+1=xn+n,由此能求出数列{xn}的通项公式.
(2)由an=n,bn=4n,cn=
,知S1=1<
,S2=1+
=
<
,S3=1+
+
=
<
,当n>3时,Sn=
+
+
+…+
<1+
+
+
+…+
<
.
(3)当n≥2,k=1,2,…,2n-1时,有dk+d2n-k=
×[
+
]≥
0,由此能够推导出对任意的n∈N*,都有(2n-1)•dn≤T2n-1.
(2)由an=n,bn=4n,cn=
| 1 |
| n•4n-1 |
| 37 |
| 32 |
| 1 |
| 8 |
| 9 |
| 8 |
| 37 |
| 32 |
| 1 |
| 8 |
| 1 |
| 48 |
| 55 |
| 48 |
| 37 |
| 32 |
| 1 |
| 1 |
| 1 |
| 2×4 |
| 1 |
| 3×42 |
| 1 |
| n×4n-1 |
| 1 |
| 2×4 |
| 1 |
| 3×42 |
| 1 |
| 3×43 |
| 1 |
| 3×4n-1 |
| 37 |
| 32 |
(3)当n≥2,k=1,2,…,2n-1时,有dk+d2n-k=
| 3 |
| 4 |
| 5k |
| 2k×(4k -1) |
| 52n-k |
| 22n-k×(42n-k-1) |
| 6×5n |
| 2n+2 |
|
解答:解:(1)依题意点Pn的坐标为(xn,yn-1),
∴yn+1=4xn+n=4xn+1,
∴xn+1=xn+n,
∴xn=xn-1+n-1
=xn-2+(n-2)+(n-1)
=…=x1+1+2+…+(n-1)
=
+1.
(2)由(1)知,an=n,bn=4n,
∵cn=
,
∴S1=1<
,S2=1+
=
<
,
S3=1+
+
=
<
,
∴当n>3时,Sn=
+
+
+…+
<1+
+
+
+…+
=1+
+
×
=
+
-
<
.
(3)当n≥2,k=1,2,…,2n-1时,有:
dk+d2n-k=
×[
+
]
≥
×2
=
=
,
又∵4k+42n-k≥2×4n,
∴42n-4k-42n-k+1≤42n-2×4n+1=(4n-1)2,
∴dk+d2n-k≥
×
=2dn,
T2n-1≥
×(2n-1)×2dn=(2n-1)dn,
∴对任意的n∈N*,都有(2n-1)•dn≤T2n-1.
∴yn+1=4xn+n=4xn+1,
∴xn+1=xn+n,
∴xn=xn-1+n-1
=xn-2+(n-2)+(n-1)
=…=x1+1+2+…+(n-1)
=
| n(n-1) |
| 2 |
(2)由(1)知,an=n,bn=4n,
∵cn=
| 1 |
| n•4n-1 |
∴S1=1<
| 37 |
| 32 |
| 1 |
| 8 |
| 9 |
| 8 |
| 37 |
| 32 |
S3=1+
| 1 |
| 8 |
| 1 |
| 48 |
| 55 |
| 48 |
| 37 |
| 32 |
∴当n>3时,Sn=
| 1 |
| 1 |
| 1 |
| 2×4 |
| 1 |
| 3×42 |
| 1 |
| n×4n-1 |
<1+
| 1 |
| 2×4 |
| 1 |
| 3×42 |
| 1 |
| 3×43 |
| 1 |
| 3×4n-1 |
=1+
| 1 |
| 8 |
| 1 |
| 3 |
| ||||
1-
|
=
| 9 |
| 8 |
| 1 |
| 36 |
| 1 |
| 9×4n-1 |
| 37 |
| 32 |
(3)当n≥2,k=1,2,…,2n-1时,有:
dk+d2n-k=
| 3 |
| 4 |
| 5k |
| 2k×(4k -1) |
| 52n-k |
| 22n-k×(42n-k-1) |
≥
| 3 |
| 4 |
|
=
| 3×2×5n |
| 4×2n |
|
=
| 6×5n |
| 2n+2 |
|
又∵4k+42n-k≥2×4n,
∴42n-4k-42n-k+1≤42n-2×4n+1=(4n-1)2,
∴dk+d2n-k≥
| 6×5n |
| 2n+2 |
| 1 |
| 4n-1 |
T2n-1≥
| 1 |
| 2 |
∴对任意的n∈N*,都有(2n-1)•dn≤T2n-1.
点评:本题考查数列的通项公式的求法,考查两个数大小的比较,考查不等式的证明,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目