题目内容
已知曲线C:y=4x,Cn:y=4x+n(n∈N+),从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xn,bn=
.
(1)求数列{xn}的通项公式;
(2)记cn=
,数列{cn}的前n项和为Tn,求证:T2n-1≤
×[1-(
)2n-1];
(3)若已知
+
+
+…+
=2n-1(n∈N*),记数列{an}的前n项和为An,数列{dn}的前n项和为Bn,试比较An与
的大小.
| yn+1 |
| yn |
(1)求数列{xn}的通项公式;
(2)记cn=
| 3×5n |
| 2n+2×(bn-1) |
| 5 |
| 3 |
| 5 |
| 8 |
(3)若已知
| d1 |
| 2 |
| d2 |
| 22 |
| d3 |
| 23 |
| dn |
| 2n |
| Bn-2 |
| 4 |
分析:(1)依题意点Pn的坐标为(xn,yn+1),故yn+1=4xn+n=4xn+1,从而能求出数列{xn}的通项公式.
(2)由cn=
,知
=
<
<
,当n≥2时,cn<
cn-1<(
)2cn-2<…<(
)n-1c1=(
)n,故T2n-1=c1+c2+…+c2n-1≤
+(
)2+…+(
)2n-1.由此能够证明T2n-1≤
×[1-(
)2n-1];
(3)由an=xn+1-xn=n,知An=
,由
+
+
+…+
=2n-1,知
+
+
+…+
=2(n-1)-1(n≥2),故
=2,n≥2,由此能够比较An与
的大小.
(2)由cn=
| 3×5n |
| 2n+2×(4n-1) |
| cn+1 |
| cn |
| 5×4n-5 |
| 8×4n-2 |
| 5×4n-5 |
| 8×4n-8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 8 |
(3)由an=xn+1-xn=n,知An=
| n(n+1) |
| 2 |
| d1 |
| 2 |
| d2 |
| 22 |
| d3 |
| 23 |
| dn |
| 2n |
| d1 |
| 2 |
| d2 |
| 22 |
| d3 |
| 23 |
| dn-1 |
| 2n-1 |
| dn |
| 2n |
| Bn-2 |
| 4 |
解答:解:(1)依题意点Pn的坐标为(xn,yn+1),
∴yn+1=4xn+n=4xn+1,
∴xn+1=xn+n,
∴xn=xn-1+n-1=xn-2+(n-2)+(n-1)=…=x1+1+2+…+(n-1)=
+1.
(2)∵cn=
,
∴
=
<
<
,…(5分)
∴当n≥2时,cn<
cn-1<(
)2cn-2<…<(
)n-1c1=(
)n,
∴T2n-1=c1+c2+…+c2n-1≤
+(
)2+…+(
)2n-1=
×[1-(
)2n-1],(当n=1时取“=”).…(8分)
(3)∵an=xn+1-xn=n,
∴An=
,
由
+
+
+…+
=2n-1,
知
+
+
+…+
=2(n-1)-1(n≥2),
∴
=2,n≥2,
而d1=2,
∴ dn=
,
于是Bn=d1+d2+d3+…+dn=2+23+24+…+2n+1=2+22+23+24+…+2n+1-4
=
-4=2n+2-6.
∴
=2n-2.…(10分)
当n=1,2时 An=
>2n-2=
;
当n=3时,An=
=2n-2=
当n≥4时,An=
<2n-2=
下面证明:当n≥4时,An=
<2n-2=
证法一:(利用组合恒等式放缩)
当n≥4时,2n-2=
+
+
+…+
+
-2=
+
+…+
>n+
+n=
>
,
∴当n≥4时,An<
…(13分)
证法二:(函数法)∵n≥4时,
<2n-2?
-2n+2<0
构造函数h(x)=
-2x+2,x∈[4,+∞),h′(x)=x-2xln2+
[h'(x)]'=h''(x)=1-2xln22
∴当x∈[4,+∞)时,h''(x)=1-2xln22<0
∴h'(x)=x-2xln2在区间[4,+∞)是减函数,
∴当x∈[4,+∞)时,h′(x)=x-2xln2+
<h′(4)=
-16ln2<
-16×
=-
<0
∴h(x)=
-2x+2在区间[4,+∞)是减函数,
∴当x∈[4,+∞)时,h(x)=
-2x+2<h(4)=
-24+2=-4<0
从而n≥4时,
-2n+2<0,即
<2n-2,
∴当n≥4时,An<
.
∴yn+1=4xn+n=4xn+1,
∴xn+1=xn+n,
∴xn=xn-1+n-1=xn-2+(n-2)+(n-1)=…=x1+1+2+…+(n-1)=
| n(n-1) |
| 2 |
(2)∵cn=
| 3×5n |
| 2n+2×(4n-1) |
∴
| cn+1 |
| cn |
| 5×4n-5 |
| 8×4n-2 |
| 5×4n-5 |
| 8×4n-8 |
| 5 |
| 8 |
∴当n≥2时,cn<
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
∴T2n-1=c1+c2+…+c2n-1≤
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 8 |
(3)∵an=xn+1-xn=n,
∴An=
| n(n+1) |
| 2 |
由
| d1 |
| 2 |
| d2 |
| 22 |
| d3 |
| 23 |
| dn |
| 2n |
知
| d1 |
| 2 |
| d2 |
| 22 |
| d3 |
| 23 |
| dn-1 |
| 2n-1 |
∴
| dn |
| 2n |
而d1=2,
∴ dn=
|
于是Bn=d1+d2+d3+…+dn=2+23+24+…+2n+1=2+22+23+24+…+2n+1-4
=
| 2(2n+1-1) |
| 2-1 |
∴
| Bn-2 |
| 4 |
当n=1,2时 An=
| n(n+1) |
| 2 |
| Bn-2 |
| 4 |
当n=3时,An=
| n(n+1) |
| 2 |
| Bn-2 |
| 4 |
当n≥4时,An=
| n(n+1) |
| 2 |
| Bn-2 |
| 4 |
下面证明:当n≥4时,An=
| n(n+1) |
| 2 |
| Bn-2 |
| 4 |
证法一:(利用组合恒等式放缩)
当n≥4时,2n-2=
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | n-1 n |
| C | n n |
| C | 1 n |
| C | 2 n |
| C | n-1 n |
| n(n-1) |
| 2 |
| n2+3n |
| 2 |
| n(n+1) |
| 2 |
∴当n≥4时,An<
| Bn-2 |
| 4 |
证法二:(函数法)∵n≥4时,
| n(n+1) |
| 2 |
| n(n+1) |
| 2 |
构造函数h(x)=
| x(x+1) |
| 2 |
| 1 |
| 2 |
∴当x∈[4,+∞)时,h''(x)=1-2xln22<0
∴h'(x)=x-2xln2在区间[4,+∞)是减函数,
∴当x∈[4,+∞)时,h′(x)=x-2xln2+
| 1 |
| 2 |
| 9 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2 |
| 7 |
| 2 |
∴h(x)=
| x(x+1) |
| 2 |
∴当x∈[4,+∞)时,h(x)=
| x(x+1) |
| 2 |
| 4×5 |
| 2 |
从而n≥4时,
| n(n+1) |
| 2 |
| n(n+1) |
| 2 |
∴当n≥4时,An<
| Bn-2 |
| 4 |
点评:本题考查数列的通项公式的求法、不等式的证明和两个表达式大小的比较,具体涉及到数列与不等式的综合运用,放缩法的应用和构造法的应用.
练习册系列答案
相关题目