题目内容
已知m=(
cosx,1+cosx),n=(2sinx,1-cosx),x∈R,函数f(x)=
•
.
(I)求f(
)的值;
(II)求函数f(x)的单调增区间;
(Ⅲ)求f(x)在区间[0,
]上的最值.
| ||
| 2 |
| m |
| n |
(I)求f(
| π |
| 3 |
(II)求函数f(x)的单调增区间;
(Ⅲ)求f(x)在区间[0,
| 5π |
| 12 |
(I)根据题意,得f(x)=
•
=
cosx•2sinx+(1+cosx)(1-cosx)
=
sin2x+1-cos2x=
sin2x+
=sin(2x-
)+
∴f(
)=sin(
-
)+
=1+
=
(II)令-
+2kπ≤2x-
≤
+2kπ,(其中k是整数)
可得-
+kπ≤x≤
+kπ
∴函数f(x)的单调增区间为(-
+kπ,
+kπ).(k∈Z)
(III)∵x∈[0,
]
∴2x-
∈[-
,
],可得-
≤sin(2x-
)≤1
因此0≤sin(2x-
)+
≤
,f(x)在区间[0,
]上的最值小值为0,最大值为
| m |
| n |
| ||
| 2 |
=
| ||
| 2 |
| ||
| 2 |
| 1-cos2x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∴f(
| π |
| 3 |
| 2π |
| 3 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
(II)令-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
可得-
| π |
| 6 |
| π |
| 3 |
∴函数f(x)的单调增区间为(-
| π |
| 6 |
| π |
| 3 |
(III)∵x∈[0,
| 5π |
| 12 |
∴2x-
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
因此0≤sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
| 5π |
| 12 |
| 3 |
| 2 |
练习册系列答案
相关题目