题目内容

直线y=2k与曲线9k2x2+y2=18k2|x|(k∈R且k≠0)的公共点的个数为(    )

A.1                    B.2                     C.3                     D.4

答案:D9k2x2+y2=18k2|x|9k2x2-18k2|x|+y2=09k2(x2-2|x|)+y2=0,x2=|x|2.

∴上式变为9k2(|x|-1)2+y2-9k2=0.∴9k2(|x|-1)2+y2=9k2,即(|x|-1)2+=1.①

因为此题是选择题,故不妨设k=1,则①变为(|x|-1)2+=1.

当x>0时,曲线为(x-1)2+=1;x<0时,曲线为(x+1)2+=1.

作出图象与y=2相交得交点为4个,故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网