题目内容

10、设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2+x+2与g(x)=2x+1在[a,b]上是“紧密函数”,则其“紧密区间”可以是(  )
分析:根据“密切函数”的定义列出绝对值不等式|x2+x+2-(2x+1)|≤1,求出解集即可得到它的“密切区间”.
解答:解:因为f(x)与g(x)在[a,b]上是“密切函数”,
则|f(x)-g(x)|≤1即|x2+x+2-(2x+1)|≤1即|x2-x+1|≤1,
化简得-1≤x2-x+1≤1,因为x2-x+1的△<0即与x轴没有交点,由开口向上得到x2-x+1>0>-1恒成立;
所以由x2-x+1≤1解得0≤x≤1,所以它的“密切区间”是[0,1]
故选B
点评:考查学生会根据题中新定义的概念列出不等式得到解集,要求学生会解绝对值不等式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网