题目内容
| AP |
| DM |
[-
,1]
| 1 |
| 2 |
[-
,1]
.| 1 |
| 2 |
分析:先设
=
,
=
,则|
|=2,|
| =1,
•
=1,然后讨论点P在BC上时与点P在CD上时
•
的取值范围,从而求出所求.
| AB |
| a |
| AD |
| b |
| a |
| b |
| a |
| b |
| AP |
| DM |
解答:解:设
=
,
=
,则|
|=2,|
| =1,
•
=1
当点P在BC上时,设
=λ
,λ∈[0,1]
•
=(
+λ
)(
-
)=2-λ+
λ-1=1-
∈[
,1]
当点P在CD上时,设
=λ
,λ∈[0,1]
•
=(λ
+
)(
-
)=2λ-1+
-λ=λ-
∈[-
,
]
∴点P在BC与CD上运动(包括端点),则
•
的取值范围是[-
,1]
故答案为:[-
,1]
| AB |
| a |
| AD |
| b |
| a |
| b |
| a |
| b |
当点P在BC上时,设
| BP |
| b |
| AP |
| DM |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| 1 |
| 2 |
| λ |
| 2 |
| 1 |
| 2 |
当点P在CD上时,设
| DP |
| a |
| AP |
| DM |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴点P在BC与CD上运动(包括端点),则
| AP |
| DM |
| 1 |
| 2 |
故答案为:[-
| 1 |
| 2 |
点评:本题主要考查了平面向量数量积的运算,以及共线向量的表示,属于中档题.
练习册系列答案
相关题目