题目内容
如果| lim |
| n→∞ |
| lim |
| n→∞ |
| an-3 |
| an+2 |
| 4 |
| 9 |
| lim |
| n→∞ |
分析:由
an存在,且
=
可知
(1-
)=1-
=
,所以
=
,由此能够导出
an的值.
| lim |
| n→∞ |
| lim |
| n→∞ |
| an-3 |
| an+2 |
| 4 |
| 9 |
| lim |
| n→∞ |
| 5 |
| an+2 |
| lim |
| n→∞ |
| 5 |
| an+2 |
| 4 |
| 9 |
| lim |
| n→∞ |
| 5 |
| an+2 |
| 5 |
| 9 |
| lim |
| n→∞ |
解答:解:由题意可知,
=
=
(1-
)=1-
=
.
∴
=
,∴
an=7.
答案:7.
| lim |
| n→∞ |
| an-3 |
| an+2 |
| lim |
| n→∞ |
| an+2-5 |
| an+2 |
| lim |
| n→∞ |
| 5 |
| an+2 |
| lim |
| n→∞ |
| 5 |
| an+2 |
| 4 |
| 9 |
∴
| lim |
| n→∞ |
| 5 |
| an+2 |
| 5 |
| 9 |
| lim |
| n→∞ |
答案:7.
点评:本题考查数列的极限,解题时要注意极限的逆运算.
练习册系列答案
相关题目