题目内容
在数列{an}中,a1=0,a2=2,且当n≥2时,数列{an}的前n项和Sn满足Sn=
.
(I)求数列{an}通项公式;
(Ⅱ)令Pn=
+
,Qn是数列{Pn}的前n项和,求证:Qn<2n+3.
| nan |
| 2 |
(I)求数列{an}通项公式;
(Ⅱ)令Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
分析:(I)当n≥3时,利用递推公式an=Sn-Sn-1=
-
可得
=
,利用累加法可求通项
(II)由等差数列的求和公式可求sn,代入Pn=
+
,结合数列的特点可以利用裂项求和
| nan |
| 2 |
| (n-1)an-1 |
| 2 |
| an |
| an-1 |
| n-1 |
| n-2 |
(II)由等差数列的求和公式可求sn,代入Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
解答:解:(I)当n≥3时,an=Sn-Sn-1=
-
∴
=
∴an=
•
…
•2= 2(n-1)
当n=1,2时,上式成立
∴an=2(n-1)
(II)证明:由(I)可得Sn=
=n(n-1)
∴Pn=
+
=
+
=
+
=2+
-
∴Qn=2n+2(1-
+
-
+…+
-
)=2n+2(1+
-
-
)
=2n+3-
<2n+3
| nan |
| 2 |
| (n-1)an-1 |
| 2 |
∴
| an |
| an-1 |
| n-1 |
| n-2 |
∴an=
| n-1 |
| n-2 |
| n-2 |
| n-3 |
| 2 |
| 1 |
当n=1,2时,上式成立
∴an=2(n-1)
(II)证明:由(I)可得Sn=
| 2n(n-1) |
| 2 |
∴Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
| (n+2)(n+1) |
| (n+1)n |
| n(n+1) |
| (n+1)(n+2) |
=
| n+2 |
| n |
| n |
| n+2 |
| 2 |
| n |
| 2 |
| n+2 |
∴Qn=2n+2(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=2n+3-
| 4n+6 |
| (n+1)(n+2) |
点评:本题主要考查了等差数列的通项公式、求和公式及裂项、分组求和方法的应用,属于数列知识的简单应用.
练习册系列答案
相关题目