题目内容

9.已知函数$f(x)={(sinx+cosx)^2}-2\sqrt{3}{cos^2}x+\sqrt{3}$.
(1)求f(x)的单调递增区间;
(2)求函数$y=f(x+\frac{π}{12})$,$x∈[{0,\frac{π}{2}}]$的值域.

分析 (1)由三角函数公式化简可得f(x)=2sin(2x-$\frac{π}{3}$)+1,解不等式$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$可得;
(2)由(1)可得$y=f(x+\frac{π}{12})=2sin(2x-\frac{π}{6})+1$,由x的范围和三角函数的值域可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=1+sin2x-2$\sqrt{3}$•$\frac{1+cos2x}{2}$+$\sqrt{3}$
=sin2x-$\sqrt{3}$cos2x+1=2sin(2x-$\frac{π}{3}$)+1,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$可得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z$,
∴f(x)的单调递增区间为:$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],k∈Z$;
(2)由(1)可得$y=f(x+\frac{π}{12})=2sin(2x-\frac{π}{6})+1$,
∵$0≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,
∴$-\frac{1}{2}≤sin(2x-\frac{π}{6})≤1$,∴0≤y≤3
∴函数的值域为:[0,3]

点评 本题考查三角函数的最值,涉及三角函数的单调性和最值,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网