题目内容

15.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(  )
A.($\frac{13}{6}$,$\frac{7}{2}$]B.($\frac{7}{2}$,$\frac{25}{6}$]C.($\frac{25}{6}$,$\frac{11}{2}$]D.($\frac{11}{2}$,$\frac{37}{6}$]

分析 化简f(x)的解析式,作出f(x)的函数图象,利用三角函数的性质求出直线y=-1与y=f(x)在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间.

解答 解:f(x)=2sin(ωx-$\frac{π}{3}$),
作出f(x)的函数图象如图所示:

令2sin(ωx-$\frac{π}{3}$)=-1得ωx-$\frac{π}{3}$=-$\frac{π}{6}$+2kπ,或ωx-$\frac{π}{3}$=$\frac{7π}{6}$+2kπ,
∴x=$\frac{π}{6ω}$+$\frac{2kπ}{ω}$,或x=$\frac{3π}{2ω}$+$\frac{2kπ}{ω}$,k∈Z,
设直线y=-1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,
则xA=$\frac{3π}{2ω}+$$\frac{2π}{ω}$,xB=$\frac{π}{6ω}+\frac{4π}{ω}$,
∵方程f(x)=-1在(0,π)上有且只有四个实数根,
∴xA<π≤xB
即$\frac{3π}{2ω}+$$\frac{2π}{ω}$<π≤$\frac{π}{6ω}+\frac{4π}{ω}$,解得$\frac{7}{2}<ω≤\frac{25}{6}$.
故选B.

点评 本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网