题目内容
有四辆不同特警车准备进驻四个编号为1,2,3,4的人群聚集地,其中有一个地方没有特警车的方法共________种.
A.144 B.182 C.106 D.170
A
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
求函数的最大值与最小值.
已知,且,求证:.
在一个投掷硬币的游戏中,把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于( )
A. B. C. D.
下列五个命题
①任何两个变量都具有相关关系 ②圆的周长与该圆的半径具有相关关系
③某商品的需求量与该商品的价格是一种非确定性关系
④根据散点图求得的回归直线方程可能是没有意义的
⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究
正确命题的序号为____________.
已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线L的参数方程为 (t为参数)
(1)写出直线L的普通方程与Q曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C,设 M(x,y)为C上任意一点,求的最小值,并求相应的点M的坐标
已知函数f(x)=cox2
(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x0∈(0,)且f(x0)=时,求f(x0+)的值
将两个数a=5,b=12交换为a=12,b=5,下面语句正确的一组是( )