题目内容
【题目】在△ABC中,已知(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),则△ABC的形状( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
【答案】D
【解析】解:∵(a2+b2)(sinAcosB﹣cosAsinB)=(a2﹣b2)(sinAcosB+cosAsinB),
∴a2sinAcosB﹣a2cosAsinB+b2sinAcosB﹣b2cosAsinB=a2sinAcosB+a2cosAsinB﹣b2sinAcosB﹣b2cosAsinB,
整理得:a2cosAsinB=b2sinAcosB,
在△ABC中,由正弦定理
=
=2R得:a=2RsinA,b=2RsinB,代入整理得:
sinAcosA=sinBcosB,
∴2sinAcosA=2sinBcosB,
∴sin2A=sin2B,
∴2A=2B 或者2A=180°﹣2B,
∴A=B或者A+B=90°.
∴△ABC是等腰三角形或者直角三角形.
故选D.
练习册系列答案
相关题目
【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至11月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x元和销售量y件之间的一组数据如表所示:
月份 | 7 | 8 | 9 | 10 | 11 |
销售单价x元 | 9 | 9.5 | 10 | 10.5 | 11 |
销售量y件 | 11 | 10 | 8 | 6 | 5 |
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润? 参考公式:回归直线方程
=b
+a,其中b=
.
参考数据:
=392,
=502.5.