题目内容

11.已知函数f(x)=x+ex-a,g(x)=1n(x+2)-4ea-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为-1-ln2.

分析 令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x,从而可证明f(x)-g(x)≥3,从而解得.

解答 解:令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x
令y=x-ln(x+2),y′=1-$\frac{1}{x+2}$=$\frac{x+1}{x+2}$,
故y=x-ln(x+2)在(-2,-1)上是减函数,(-1,+∞)上是增函数,
故当x=-1时,y有最小值-1-0=-1,
而ex-a+4ea-x≥4,
(当且仅当ex-a=4ea-x,即x=a+ln2时,等号成立);
故f(x)-g(x)≥3(当且仅当等号同时成立时,等号成立);
故x=a+ln2=-1,
即a=-1-ln2.
故答案为:-1-ln2.

点评 本题考查了导数的综合应用及基本不等式的应用,同时考查了方程的根与函数的零点的关系应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网