题目内容
11.已知函数f(x)=x+ex-a,g(x)=1n(x+2)-4ea-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为-1-ln2.分析 令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x,从而可证明f(x)-g(x)≥3,从而解得.
解答 解:令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x,
令y=x-ln(x+2),y′=1-$\frac{1}{x+2}$=$\frac{x+1}{x+2}$,
故y=x-ln(x+2)在(-2,-1)上是减函数,(-1,+∞)上是增函数,
故当x=-1时,y有最小值-1-0=-1,
而ex-a+4ea-x≥4,
(当且仅当ex-a=4ea-x,即x=a+ln2时,等号成立);
故f(x)-g(x)≥3(当且仅当等号同时成立时,等号成立);
故x=a+ln2=-1,
即a=-1-ln2.
故答案为:-1-ln2.
点评 本题考查了导数的综合应用及基本不等式的应用,同时考查了方程的根与函数的零点的关系应用.
练习册系列答案
相关题目
1.直线y=kx+1与圆(x-2)2+(y-1)2=4相交于P、Q两点.若|PQ|$≥2\sqrt{2}$,则k的取值范围是( )
| A. | $[-\frac{3}{4},0]$ | B. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | C. | [-1,1] | D. | $[-\sqrt{3},\sqrt{3}]$ |
16.若函改数y=x3-ax2-x+6在区间(0,1)内单调递减.则实数a的取值范围为( )
| A. | a≥1 | B. | -1<a<0 | C. | a<0 | D. | 0<a<1 |
1.在区间[0,2]上任取两个实数a,b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点的概率是( )
| A. | $\frac{π}{8}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{4-π}{8}$ | D. | $\frac{π}{4}$ |