题目内容
某研究机构准备举办一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如表所示
从这50名教师中随机选出2名,问这2人使用相同版本教材的概率是 .
| 版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
| 人数 | 20 | 15 | 5 | 10 |
考点:古典概型及其概率计算公式
专题:概率与统计,排列组合
分析:求出从50名教师中随机选出2名的基本事件数和抽出的2人使用相同版本教材的基本事件数,计算对应的概率即可.
解答:
解:根据题意,得;
从50名教师中随机选出2名,基本事件数为
=
=25×49;
其中2人使用相同版本教材的基本事件数为
+
+
+
=19×10+15×7+5×2+5×9;
∴对应的概率是
P=
=
.
故答案为:
.
从50名教师中随机选出2名,基本事件数为
| C | 2 50 |
| 50×49 |
| 2 |
其中2人使用相同版本教材的基本事件数为
| C | 2 20 |
| C | 2 15 |
| C | 2 5 |
| C | 2 10 |
∴对应的概率是
P=
| 19×10+15×7+5×2+5×9 |
| 25×49 |
| 2 |
| 7 |
故答案为:
| 2 |
| 7 |
点评:本题考查了组合数的计算问题,也考查了古典概型的计算问题,是基础题.
练习册系列答案
相关题目
动圆C经过定点F(0,2),且与直线y+2=0相切,则动圆的圆心C的轨迹方程是( )
| A、x2=8y |
| B、y2=8x |
| C、y=2 |
| D、x=2 |