ÌâÄ¿ÄÚÈÝ
ÔÚ£¨x2+x+1£©n=D
x2n+D
x2n-1+D
x2n-2+¡+D
x+D
£¨n¡ÊN£©µÄÕ¹¿ªÊ½ÖУ¬°ÑD
£¬D
£¬D
£¬¡£¬D
½Ð×öÈýÏîʽµÄn´ÎϵÊýÁУ®
£¨¢ñ£©ÀýÈçÈýÏîʽµÄ1´ÎϵÊýÁÐÊÇ1£¬1£¬1£¬Ìî¿Õ£º
ÈýÏîʽµÄ2´ÎϵÊýÁÐÊÇ £»
ÈýÏîʽµÄ3´ÎϵÊýÁÐÊÇ £®
£¨¢ò£©¶þÏîʽ£¨a+b£©n£¨n¡ÊN£©µÄÕ¹¿ªÊ½ÖУ¬ÏµÊý¿ÉÓÃÑî»ÔÈý½ÇÐÎÊýÕó±íʾ£¬ÈçÏÂ

¢Ùµ±0¡Ün¡Ü4£¬n¡ÊNʱ£¬ÀàËÆÑî»ÔÈý½ÇÐÎÊýÕó±í£¬ÇëÁгöÈýÏîʽµÄn´ÎϵÊýÁеÄÊýÕó±í£»
¢ÚÓÉÑî»ÔÈý½ÇÐÎÊýÕó±íÖпɵóöÐÔÖÊ£ºC
=C
+C
£¬ÀàËÆµÄÇëÓÃÈýÏîʽµÄn´ÎϵÊý±íʾD
£¨1¡Ük¡Ü2n-1£¬k¡ÊN£©£¨ÎÞÐëÖ¤Ã÷£©£»
£¨¢ó£©ÊÔÓöþÏîʽϵÊý£¨×éºÏÊý£©±íʾD
£®
0 n |
1 n |
2 n |
2n-1 n |
2n n |
0 n |
1 n |
2 n |
2n n |
£¨¢ñ£©ÀýÈçÈýÏîʽµÄ1´ÎϵÊýÁÐÊÇ1£¬1£¬1£¬Ìî¿Õ£º
ÈýÏîʽµÄ2´ÎϵÊýÁÐÊÇ
ÈýÏîʽµÄ3´ÎϵÊýÁÐÊÇ
£¨¢ò£©¶þÏîʽ£¨a+b£©n£¨n¡ÊN£©µÄÕ¹¿ªÊ½ÖУ¬ÏµÊý¿ÉÓÃÑî»ÔÈý½ÇÐÎÊýÕó±íʾ£¬ÈçÏÂ
¢Ùµ±0¡Ün¡Ü4£¬n¡ÊNʱ£¬ÀàËÆÑî»ÔÈý½ÇÐÎÊýÕó±í£¬ÇëÁгöÈýÏîʽµÄn´ÎϵÊýÁеÄÊýÕó±í£»
¢ÚÓÉÑî»ÔÈý½ÇÐÎÊýÕó±íÖпɵóöÐÔÖÊ£ºC
n n+1 |
n n |
n-1 n |
k+1 n+1 |
£¨¢ó£©ÊÔÓöþÏîʽϵÊý£¨×éºÏÊý£©±íʾD
3 n |
¿¼µã£º¶þÏîʽϵÊýµÄÐÔÖÊ
רÌ⣺×ÛºÏÌâ,¶þÏîʽ¶¨Àí
·ÖÎö£º£¨¢ñ£©ÓÉ£¨x2+x+1£©2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1£¬ÇóµÃ2´ÎϵÊýÁУ®Í¬Àí¸ù¾Ý£¨x2+x+1£©3=£¨x4+2x3+3x2+2x+1£©£¨x2+x+1£©=x6+3x5+6x4+7x3+6x2+3x+1£¬ÇóµÃ3´ÎϵÊýÁУ®
£¨¢ò£©¢Ù¢ÚÈçͼËùʾ£º¸ù¾ÝÈýÏîʽµÄ2´ÎϵÊýÁкÍ3´ÎϵÊýÁе͍Ò壬¿ÉµÃ½áÂÛ£®
£¨¢ó£©¸ù¾ÝÈýÏîʽµÄ2´ÎϵÊýÁкÍ3´ÎϵÊýÁе͍Ò壬ÔÙÀûÓÃ×éºÏÊý¹«Ê½µÄÐÔÖÊ£¬¿ÉÓöþÏîʽϵÊý±íʾ
£¨¢ò£©¢Ù¢ÚÈçͼËùʾ£º¸ù¾ÝÈýÏîʽµÄ2´ÎϵÊýÁкÍ3´ÎϵÊýÁе͍Ò壬¿ÉµÃ½áÂÛ£®
£¨¢ó£©¸ù¾ÝÈýÏîʽµÄ2´ÎϵÊýÁкÍ3´ÎϵÊýÁе͍Ò壬ÔÙÀûÓÃ×éºÏÊý¹«Ê½µÄÐÔÖÊ£¬¿ÉÓöþÏîʽϵÊý±íʾ
½â´ð£º
½â£º£¨¢ñ£©¡ß£¨x2+x+1£©2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1£¬
¡àÈýÏîʽµÄ2´ÎϵÊýÁÐÊÇ1£¬2£¬3£¬2£¬1£»
¡ß£¨x2+x+1£©3=£¨x4+2x3+3x2+2x+1£©£¨x2+x+1£©=x6+3x5+6x4+7x3+6x2+3x+1£¬
¡àÈýÏîʽµÄ3´ÎϵÊýÁÐÊÇ1£¬3£¬6£¬7£¬6£¬3£¬1£®
£¨¢ò£©¢ÙÁгöÑî»ÔÈý½ÇÐÎÀàËÆµÄ±í£¨0¡Ün¡Ü4£¬n¡ÊN£©£º
1
1 1 1
1 2 3 2 1
1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1
¢Ú
=
£¨ 1¡Ük¡Ü2 n-1 £©£»
£¨¢ó£©ÓÉ£¨¢ò£©¢Ú¿ÉµÃ
=1+n-2+
=
£¬
¡ß
=n-1=
-1£¬
¡àÓÉ
=
µÃ
-
=
-1
n·Ö±ðÈ¡3£¬4£¬¡£¬n´úÈ룬ÀۼӿɵÃ
-
=
+
+
-£¨n-2£©=
-£¨n+2£©£¬
¡ß
=2£¬
¡à
=
-
£®
¡àÈýÏîʽµÄ2´ÎϵÊýÁÐÊÇ1£¬2£¬3£¬2£¬1£»
¡ß£¨x2+x+1£©3=£¨x4+2x3+3x2+2x+1£©£¨x2+x+1£©=x6+3x5+6x4+7x3+6x2+3x+1£¬
¡àÈýÏîʽµÄ3´ÎϵÊýÁÐÊÇ1£¬3£¬6£¬7£¬6£¬3£¬1£®
£¨¢ò£©¢ÙÁгöÑî»ÔÈý½ÇÐÎÀàËÆµÄ±í£¨0¡Ün¡Ü4£¬n¡ÊN£©£º
1
1 1 1
1 2 3 2 1
1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1
¢Ú
| D | k+1 n+1 |
| D | k-1 n |
| +D | k n |
| +D | k+1 n |
£¨¢ó£©ÓÉ£¨¢ò£©¢Ú¿ÉµÃ
| D | 2 n-1 |
| C | 2 n-1 |
| C | 2 n |
¡ß
| D | 1 n-1 |
| C | 1 n |
¡àÓÉ
| D | 3 n |
| D | 1 n-1 |
| +D | 2 n-1 |
| +D | 3 n-1 |
| D | 3 n |
| D | 3 n-1 |
| C | 2 n+1 |
n·Ö±ðÈ¡3£¬4£¬¡£¬n´úÈ룬ÀۼӿɵÃ
| D | 3 n |
| D | 3 2 |
| C | 2 4 |
| C | 2 5 |
| C | 2 n+1 |
| C | 3 n+2 |
¡ß
| D | 3 2 |
¡à
| D | 3 n |
| C | 3 n+2 |
| C | 1 n |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þÏîʽ¶¨ÀíµÄÓ¦Óã¬×éºÏÊýµÄ¼ÆË㹫ʽµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿