搜索
题目内容
已知函数
则
的值为
.
试题答案
相关练习册答案
试题分析:根据题意可知,
,那么结合对数函数的性质可知
,因此那么可知
故答案为
点评:根据已知的表达式求解函数值,要注意变量的取值范围,则要选择不同的解析式来计算,对于复合函数的求值,一般从内向外依次求解函数值得到结论,属于基础题。
练习册系列答案
培优新方法系列答案
状元及第系列答案
名师教你学数学系列答案
同步奥数系列答案
高中阶段三测卷系列答案
豫人教育单元检测系列答案
名校名师夺冠王检测卷系列答案
新课堂同步练系列答案
优化方案高中同步测试卷系列答案
上海达标卷系列答案
相关题目
已知
是定义在
上的单调函数,且对任意的
,都有
,则方程
的解所在的区间是 ( )
A.
B.
C.
D.
曲线
的所有切线中,斜率最小的切线方程是
。
已知函数
的定义域为R,当
时,
,且对任意的实数
R,等式
成立.若数列
满足
,且
(
),则
的值为( )
A.4024
B.4023
C.4022
D.4021
(本小题满分12分)已知命题
P
:函数
是
R
上的减函数,命题
Q
:在
时,不等式
恒成立,若命题“
”是真命题,求实数
的取值范围.
已知函数
在
处有极大值,则常数
已知函数
,
为
的导数.
(1)当
时,求
的单调区间和极值;
(2)设
,是否存在实数
,对于任意的
,存在
,使得
成立?若存在,求出
的取值范围;若不存在,说明理由.
函数
在
的值域
.
( 本题满分14分)已知函数对任意实数
均有
,其中常数k为负数,且
在区间
上有表达式
(1)求
的值;
(2)写出
在
上的表达式,并讨论函数
在
上的单调性.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案