题目内容

精英家教网在三棱锥S-ABC中,△ABC是边长为4的正三角形,点S在平面ABC上的射影恰为AC的中点,SA=2
3
,M、N分别为AB、SB的中点.
(1)证明AC丄SB;
(2)求直线CN与平面ABC所成角的余弦值;
(3)求点B到平面CMN的距离.
分析:(1)欲证AC⊥SB,取AC中点D,连接DS、DB.根据线面垂直的性质定理可知,只须证AC⊥SD且AC⊥DB,即得;
(2)欲求直线CN与平面ABC所成角的余弦值大小,可先作出直线CN与平面ABC所成角,结合SD⊥平面ABC.过D作DE⊥CM于E,连接SE,则SE⊥CM,从而得出∠NCD为直线CN与平面ABC所成角.最后在Rt△NCD中求解即可;
(3)设点B到平面CMN的距离为h,利用等到体积法:VB-SNM=VS-NMB,即可求得点B到平面CMN的距离.
解答:精英家教网证明:(Ⅰ)取AC中点D,连接SO.
∵SO⊥面ABC,
∴AC⊥SO,
∵△ABC是边长为4的正三角形,
∴AC⊥BO
∴AC⊥面SOB,∴AC⊥SB.

(Ⅱ)过N作ND∥SO交OB于D,则ND⊥面ABC,且D是OB的中点,
在Rt△NCD中,ND=
1
2
SO=
2

CD=
CO 2+OD 2
=
7
∴CN=3
∴cos∠NCD=
CD
CN
=
7
3

直线CN与平面ABC所成角的余弦值
7
3

(Ⅲ)解:在Rt△SDE中,SE=
SD2+DE2
=
5
,CM是边长为4正△ABC的中线,CM=2
3

∴S△SCM=
1
2
CM•SE=
1
2
×2
3
×
5
=
15

设点B到平面SCM的距离为h,
由VB-SCM=VS-CMB,SD⊥平面ABC,得
1
3
S△SCM•h=
1
3
S△CMB•SD,
∴h=
S△CMB•SD
S△SCM
=
4
2
3
.即点B到平面SCM的距离为
4
2
3
点评:本小题主要考查直线与直线,直线与平面所成角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.求距离的关键是构造三棱锥的体积求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网