题目内容

已知各项均为正数的数列{an},其前n项和为Sn,且满足2Sn=an2+an
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{
1
an2
}的前n项和为Tn,求证:当n≥3时,Tn
3
2
+
1-2n
2n2
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出2an=an2-an-12+an-an-1,化简得(an-an-1-1)(an+an-1)=0,由此能求出an=n.
(Ⅱ)当n≥3时,利用放缩法和裂项求和法能证明Tn
3
2
+
1-2n
2n2
解答: 解:(Ⅰ)∵2Sn=an2+an…①,∴2a1=a12+a1
解得a1=1或0(舍),
2Sn-1=an-12+an-1…②,
①-②得2an=an2-an-12+an-an-1
化简得(an-an-1-1)(an+an-1)=0,
∵数列{an}各项均为正数,∴an-an-1-1=0,即an=an-1+1,
∴{an}为等差数列,an=n,
经检验,a1=1也符合该式,
∴an=n.…(5分)
(Ⅱ)当n≥3时,
Tn=
1
12
+
1
22
+
1
32
+…
1
n2
=1+
1
2
(
2
22
+
2
32
+…
2
n2
)
=
1
2
(1+1+
1
22
+
1
22
+
1
32
+
1
32
+…+
1
n2
+
1
n2
)
1
2
(1+2
1
22
+2
1
22
×
1
32
+…+2
1
(n-1)2
×
1
n2
+
1
n2
)
=
1
2
(1+
2
1×2
+
2
2×3
+…+
2
(n-1)×n
+
1
n2
)
=
1
2
(1+
2
1
-
2
2
+
2
2
-
2
3
+…+
2
(n-1)
-
2
n
+
1
n2
)
=
1
2
(3-
2
n
+
1
n2
)=
3
2
+
1-2n
2n2

∴当n≥3时,Tn
3
2
+
1-2n
2n2
.…(12分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网