题目内容
已知函数在区间上单调递减,在区间上单调递增;函数.
(1)请写出函数与函数在的单调区间(只写结论,不证明);
(2)求函数的最值;
(3)讨论方程实根的个数.
已知集合A={a-2,2a2+5a,10},且-3∈A,求实数a的值
设,,则下列表示不正确的是( )
A. B. C. D.
【选修4-4:坐标系与参数方程】
已知圆的参数方程为(,为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.
【选修4-1:几何证明选讲】
如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.
(1)证明:PG=PD;
(2)若AC=BD,求证:线段AB与DE互相平分.
已知,,那么是的( )条件
A、充分不必要 B、充要 C、必要不充分 D、既不充分也不必要
若是定义在上的增函数,且对一切,,满足.
(1)求的值;
(2)若,解不等式.
若满足约束条件:,则的最大值为___ ____.
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.
(1)求A的大小;
(2)若sin B+sin C=1,试判断△ABC的形状.