题目内容

在△ABC中,B=C,2b=
3
a.求
(1)cosA的值.
(2)求cos(2A+
π
4
)的值.
(1)由B=C,2b=
3
a,得b=c=
3
2
a…(3分)
令a=2,得b=c=
3

由余弦定理,得cosA=
b2+c2-a2
2bc
=
3+3-4
3
×
3
=
1
3
…(6分)
(2)∵cosA=
1
3
>0,可得A为锐角
∴sinA=
1-cos2A
=
2
2
3
…(8分)
因此sin2A=2sinAcosA=
4
2
9

cos2A=cos2A-sin2A=
1
9
-
8
9
=-
7
9
…(11分)
∴cos(2A+
π
4
)=cos2Acos
π
4
-sin2Asin
π
4
=
-8-7
2
18
…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网