题目内容

若f(x)=x2+ax+b-3,x∈R的图象恒过(2,0),则a2+b2的最小值为(  )
A、5
B、4
C、
1
4
D、
1
5
分析:因为二次函数恒过(2,0),所以把(2,0)代入二次函数解析式中,得到a与b的关系式,利用a表示出b,代入a2+b2中,得到关于a的二次函数,配方可得当a=-
2
5
和b=-
1
5
,a2+b2取得最小值,求出最小值即可.
解答:解:把(2,0)代入二次函数解析式得:
4+2a+b-3=0,即2a+b=-1,解得:b=-1-2a,
则a2+b2=a2+(-1-2a)2=5a2+4a+1=5(a+
2
5
2+
1
5

所以当a=-
2
5
,b=-
1
5
时,a2+b2的最小值为
1
5

故选D.
点评:此题考查学生掌握函数过某点即点的坐标满足函数解析式,会利用二次函数的思想求式子的最值,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网