题目内容
设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是( )
分析:先把方程bx2+ay2=ab及ax+by=0化简,得到ax+by=0表示过原点,斜率为-
的直线,方程bx2+ay2=ab表示椭圆或双曲线,再按a,b同号和异号两种情况讨论方程bx2+ay2=ab及ax+by=0所表示的图形再同一坐标系中的情况,排除不可能出现的图形,即可得到正确答案.
| a |
| b |
解答:解:方程bx2+ay2=ab可变形为
+
=1,方程ax+by=0可变形为y=-
x
∴方程ax+by=0的图象为过原点的直线,排除B
若a,b同号,则-
<0,直线过二,四象限,方程bx2+ay2=ab图象为椭圆,排除A
若a,b异号,则-
>0,直线过一,三象限,方程bx2+ay2=ab图象为双曲线,排除D
故选C
| x2 |
| a |
| y2 |
| b |
| a |
| b |
∴方程ax+by=0的图象为过原点的直线,排除B
若a,b同号,则-
| a |
| b |
若a,b异号,则-
| a |
| b |
故选C
点评:本题主要考查了根据直线方程与圆锥曲线方程求图象,考查了学生数形结合的能力.
练习册系列答案
相关题目