题目内容
设函数,,记的解集为M,的解集为N.
(1)求M;
(2)当时,证明:.
已知函数
(1)若在上的最大值和最小值分别记为,求;
(2)设若对恒成立,求的取值范围.
某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。根据这50位市民
(I)分别估计该市的市民对甲、乙部门评分的中位数;
(II)分别估计该市的市民对甲、乙部门的评分做于90的概率;
(III)根据茎叶图分析该市的市民对甲、乙两部门的评价。
当时,不等式恒成立,则实数a的取值范围是( )
A. B. C. D.
如图,和所在平面互相垂直,且,,E、F、G分别为AC、DC、AD的中点.
(1)求证:平面BCG;
(2)求三棱锥D-BCG的体积.
附:椎体的体积公式,其中S为底面面积,h为高.
将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得集合体的侧面积是( )
A.4 B.8 C.2 D.
已知则=________.
若满足且的最小值为-4,则的值为( )
定积分的值为( )