题目内容
在三棱锥SABC中,底面是边长为2
的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.
![]()
(1)若D为侧棱SB上一点,当
为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
(1)
(2)![]()
【解析】以O点为原点,OB为x轴,OC为y轴,OS为z轴建立空间直角坐标系O-xyz.
![]()
由题意知∠SBO=45°,SO=3.O(0,0,0),C(0,
,0),A(0,-
,0),S(0,0,3),B(3,0,0).
(1)设
=λ
(0≤λ≤1),则
=(1+λ)
+λ
=(3(1+λ),0,3λ),
所以
=(3(1-λ),-
,3λ).
因为
=(3,
,0),CD⊥AB,所以
·
=9(1-λ)-3=0,解得λ=
.
故
时,CD⊥AB.
(2)平面ACB的法向量为n1=(0,0,1),设平面SBC的法向量n2=(x,y,z),则n2·
=0,n2·
=0,则
解得
取n2=(1,
,1),
所以cos〈n1,n2〉=
=
.
又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为
.
练习册系列答案
相关题目