题目内容
已知an=
(p为常数)
,则
an=
|
|
| lim |
| n→∞ |
1
1
.分析:由题设知1≤n≤100时,an=
=2-
,n>101时,an=(1+
)p,所以
an=
(1+
)p=1.
| 2n-1 |
| n+1 |
| 3 |
| n+1 |
| 1 |
| n |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| n |
解答:解:∵an=
(p为常数)
,
∴1≤n≤100时,an=
=2-
,
n>101时,an=(1+
)p,
∴
an=
(1+
)p=1.
故答案为1.
|
|
∴1≤n≤100时,an=
| 2n-1 |
| n+1 |
| 3 |
| n+1 |
n>101时,an=(1+
| 1 |
| n |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| n |
故答案为1.
点评:本题考查数列的极限的性质和运算,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目