题目内容
(2012•西区模拟)已知
,
是两个互相垂直的单位向量,且
•
=
•
=1,|
|=
,则对任意的正实数t,|
+t
+
|的最小值( )
| a |
| b |
| c |
| a |
| c |
| d |
| c |
| 2 |
| c |
| a |
| 1 |
| t |
| b |
分析:由
,
是两个互相垂直的单位向量,且
-
=1,
-
=1, |
|=
,知对任意的正实数t, |
+t
+
|2=2+t2+
+2t+
≥2+2+4=8,由此能求出|
+t
+
|的最小值.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| 2 |
| c |
| a |
| 1 |
| t |
| b |
| 1 |
| t2 |
| 2 |
| t |
| c |
| a |
| 1 |
| t |
| b |
解答:解:∵
,
是两个互相垂直的单位向量,
且
-
=1,
-
=1, |
|=
,
∴对任意的正实数t, |
+t
+
|2=
2+t2
2+
2+2t
•
+
•
+2
•
=2+t2+
+2t+
≥2+2+4=8,
当且仅当t2=
,2t=
时,等号成立,
即t=1时,
∴|
+t
+
|的最小值是2
.
| a |
| b |
且
| c |
| a |
| c |
| b |
| c |
| 2 |
∴对任意的正实数t, |
| c |
| a |
| 1 |
| t |
| b |
| c |
| a |
| 1 |
| t2 |
| b |
| a |
| c |
| 2 |
| t |
| c |
| b |
| a |
| b |
=2+t2+
| 1 |
| t2 |
| 2 |
| t |
≥2+2+4=8,
当且仅当t2=
| 1 |
| t2 |
| 2 |
| t |
即t=1时,
∴|
| c |
| a |
| 1 |
| t |
| b |
| 2 |
点评:本题考查平面向量的数量积的运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目