题目内容

已知g(x)=-x2-3,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[-1,2]时,f(x)的最小值为1,求f(x)的表达式.
设f(x)=ax2+bx+c(a≠0)
则g(x)+f(x)=(a-1)x2+bx+c-3为奇函数,
∴a=1,c=3(4分)
f(x)=x2+bx+3=(x+
b
2
)2+3-
b2
4
∵当x∈[-1,2]时f(x)的最小值为1
-
b
2
<-1
f(-1)=1-b+3=1
-1≤-
b
2
≤2
3-
b2
4
=1
-
b
2
>2
f(2)=4+2b+3=1
(8分)
解得b=3或b=-2
2
(10分)
f(x)=x2+3x+3或f(x)=x2-2
2
x+3
(12分)
故f(x)的表达式为:f(x)=x2+3x+3或f(x)=x2-2
2
x+3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网