题目内容

过椭圆
x2
9
+
y2
4
=1内一定点(1,0)作弦,则弦中点的轨迹方程为
 
分析:设弦两端点坐标为(x1,y1),(x2.y2),诸弦中点坐标为(x,y).弦所在直线斜率为k,把两端点坐标代入椭圆方程相减,把斜率看的表达式代入后整理即可得到弦中点的轨迹方程.
解答:解:设弦两端点坐标为(x1,y1),(x2.y2),诸弦中点坐标为(x,y).弦所在直线斜率为k
x
2
1
9
+
y
2
1
4
=1

x
2
2
9
+
y
2
2
4
=1

两式相减得;
1
9
(x1+x2)(x1-x2)+
1
4
(y1+y2)(y1-y2)=0
2x
9
+
2y
4
k= 0

又∵k=
y
x-1
,代入上式得
2x/9+2y^2/4(x-1)=0
2x
9
+
2y2
4(x-1)
=0

整理得诸弦中点的轨迹方程:4x2+9y2-4x=0
故答案为4x2+9y2-4x=0
点评:本题主要考查了椭圆的应用及求轨迹方程的问题.考查了学生对圆锥曲线知识综合的把握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网