题目内容

8.在平面直角坐标系中,以原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)从C2上任意一点P作曲线C1的切线,设切点为Q,求切线长PQ的最小值及此时点P的极坐标.

分析 (I)曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),消去参数可得:$(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}$=1.曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$,化为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)=8$,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出.
(II)如图所示,过圆心C1作C1P⊥直线C2,垂足为点P,此时切线长PQ最小.利用点到直线的距离公式可得|C1P|.|PQ|=$\sqrt{|{C}_{1}P{|}^{2}-{r}^{2}}$,直线C1P的方程为:y=x,联立$\left\{\begin{array}{l}{y=x}\\{x+y-8\sqrt{2}=0}\end{array}\right.$,解得P,利用$\left\{\begin{array}{l}{ρ=\sqrt{{x}^{2}+{y}^{2}}}\\{tanθ=\frac{y}{x}}\end{array}\right.$即可得出P极坐标.

解答 解:(I)曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),消去参数可得:$(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}$=1.
曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$,化为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)=8$,∴x+y-8$\sqrt{2}$=0
(II)如图所示,过圆心C1作C1P⊥直线C2,垂足为点P,此时切线长PQ最小.
|C1P|=$\frac{|\sqrt{2}+\sqrt{2}-8\sqrt{2}|}{\sqrt{2}}$=6.
∴|PQ|=$\sqrt{|{C}_{1}P{|}^{2}-{r}^{2}}$=$\sqrt{{6}^{2}-{1}^{2}}$=$\sqrt{35}$,
直线C1P的方程为:y=x,
联立$\left\{\begin{array}{l}{y=x}\\{x+y-8\sqrt{2}=0}\end{array}\right.$,解得x=y=4$\sqrt{2}$.
∴P$(4\sqrt{2},4\sqrt{2})$,
∴$ρ=\sqrt{(4\sqrt{2})^{2}+(4\sqrt{2})^{2}}$=8,
$tanθ=\frac{4\sqrt{2}}{4\sqrt{2}}$=1,θ=$\frac{π}{4}$.
∴P$(8,\frac{π}{4})$.

点评 本题考查了直线的极坐标方程化为直角坐标方程、圆的参数方程化为普通方程、直线与圆的位置关系、点到直线的距离公式、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网