题目内容

13.如图所示,已知M,N是椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1上两动点,且直线OM与ON的斜率之积为-$\frac{1}{2}$(其中O为坐标原点),若点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

分析 设出P,M,N的坐标,根据题设等式建立等式,把M,N代入椭圆方程,整理求得x2+2y220+4(x1x2+2y1y2),设出直线OM,ON的斜率,利用题意可求得x1x2+2y1y2=0,进而求得x2+2y2的值,利用椭圆的定义可推断出|PF1|+|PF2|为定值求得c,则两定点坐标可得.

解答 解:设P(x,y),M(x1,y1),N(x2,y2),
则由$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,得(x,y)=(x1,y1)+2(x2,y2),
即x=x1+2x2,y=y1+2y2
∵点M,N在椭圆上,所以$\frac{{{x}_{1}}^{2}}{4}$+$\frac{{{y}_{1}}^{2}}{2}$=1,$\frac{{{x}_{2}}^{2}}{4}$+$\frac{{{y}_{2}}^{2}}{2}$=1,
故x2+2y2=(x12+4x22+4x1x2)+2(y12+4y22+4y1y2)=20+4(x1x2+2y1y2),
设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=-$\frac{1}{2}$,
∴x1x2+2y1y2=0,
∴x2+2y2=20,
所以P在椭圆$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{10}$=1上;
设该椭圆的左,右焦点为F1,F2
由椭圆的定义可推断出|PF1|+|PF2|为定值,因为c=$\sqrt{10}$,
则这两个定点坐标是(-$\sqrt{10}$,0)($\sqrt{10}$,0).

点评 本题主要考查了椭圆的简单性质.同时考查向量加法的平行四边形法则,考查了学生分析问题和解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网