ÌâÄ¿ÄÚÈÝ
Èçͼ£¬½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£¬xÖáÔ򵯮½ÃæÉÏ£¬yÖá´¹Ö±Ó򵯮½Ã棬µ¥Î»³¤¶ÈΪ1ǧÃ×£¬Ä³ÅÚλÓÚ×ø±êԵ㣮ÒÑÖªÅÚµ¯·¢ÉäºóµÄ¹ì¼£ÔÚ·½³Ìy£½kx£
(1£«k2)x2 (k>0)±íʾµÄÇúÏßÉÏ£¬ÆäÖÐkÓë·¢Éä·½ÏòÓйأ®ÅÚµÄÉä³ÌÊÇÖ¸ÅÚµ¯Â䵨µãµÄºá×ø±ê£®
![]()
(1)ÇóÅÚµÄ×î´óÉä³Ì£»
(2)ÉèÔÚµÚÒ»ÏóÏÞÓÐÒ»·ÉÐÐÎï(ºöÂÔÆä´óС)£¬Æä·ÉÐи߶ÈΪ3.2ǧÃ×£¬ÊÔÎÊËüµÄºá×ø±êa²»³¬¹ý¶àÉÙʱ£¬ÅÚµ¯¿ÉÒÔ»÷ÖÐËü£¿Çë˵Ã÷ÀíÓÉ£®
½â¡¡(1)Áîy£½0£¬µÃkx£
(1£«k2)x2£½0£¬
ÓÉʵ¼ÊÒâÒåºÍÌâÉèÌõ¼þÖªx>0£¬ÓÖk>0£¬
¹Ê
£¬
µ±ÇÒ½öµ±k£½1ʱȡµÈºÅ£®
ËùÒÔÅÚµÄ×î´óÉä³ÌΪ10ǧÃ×£®
(2)ÒòΪa>0£¬ËùÒÔÅÚµ¯¿É»÷ÖÐÄ¿±ê⇔´æÔÚk>0£¬
ʹ3.2£½ka£
(1£«k2)a2³ÉÁ¢
⇔¹ØÓÚkµÄ·½³Ìa2k2£20ak£«a2£«64£½0ÓÐÕý¸ù
⇔Åбðʽ¦¤£½(£20a)2£4a2(a2£«64)¡Ý0⇔0<a¡Ü6.
ËùÒÔµ±a²»³¬¹ý6ǧÃ×ʱ£¬¿É»÷ÖÐÄ¿±ê£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿