题目内容
已知向量| a |
| x |
| 2 |
| x |
| 2 |
| π |
| 4 |
| b |
| 2 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| a |
| b |
(1)求函数f(x)的最小正周期,并写出f(x)在[0,π]上的单调递增区间.
(2)若f(x)=-
4
| ||
| 5 |
| 17π |
| 12 |
| 7π |
| 4 |
| 2x+2sin2x |
| 1-tanx |
分析:(1)利用两个向量的数量积公式,两角和差的三角公式,同角三角函数的基本关系,化简函数f(x)的解析式为
sin(x+
),可得函数的最小正周期等于2π,在[0,
]上的单调递增.
(2)由f(x)=-
,可得sin(x+
) 的值,从而求得 tan(x+
) 的值,由
=[1-2cos2(x+
)]•tan(x+
) 求出结果.
| 2 |
| π |
| 4 |
| π |
| 4 |
(2)由f(x)=-
4
| ||
| 5 |
| π |
| 4 |
| π |
| 4 |
| sin2x+2sin2x |
| 1-tanx |
| π |
| 4 |
| π |
| 4 |
解答:解:(1)函数f(x)=
•
=2
cos
sin(
+
)+tan(
+
)tan(
-
)
=2
cos
(
sin
+
cos
)+
•
=2sin
cos
+2cos2
-1
=sinx+cosx=
sin(x+
),故函数的最小正周期等于2π,f(x)在[0,
]上的单调递增.
(2)若f(x)=
sin(x+
)=-
,∴sin(x+
)=
,由
<x+
< 2π,
∴cos(x+
)=
,∴tan(x+
)=
,
∴
=sin2x•
=-cos(2x+
)•tan(x+
)=[1-2cos2(x+
)]•tan(x+
)
=[1-2(
)2]•(-
)=-
.
| a |
| b |
| 2 |
| x |
| 2 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
=2
| 2 |
| x |
| 2 |
| ||
| 2 |
| x |
| 2 |
| ||
| 2 |
| x |
| 2 |
1+ tan
| ||
1- tan
|
tan
| ||
1+ tan
|
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=sinx+cosx=
| 2 |
| π |
| 4 |
| π |
| 4 |
(2)若f(x)=
| 2 |
| π |
| 4 |
4
| ||
| 5 |
| π |
| 4 |
| -4 |
| 5 |
| 5π |
| 3 |
| π |
| 4 |
∴cos(x+
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| -4 |
| 3 |
∴
| sin2x+2sin2x |
| 1-tanx |
| 1+tanx |
| 1-tanx |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=[1-2(
| 3 |
| 5 |
| 4 |
| 3 |
| 28 |
| 75 |
点评:本题考查两个向量的数量积公式,两角和差的三角公式,同角三角函数的基本关系,式子的变形是解题的关键.
练习册系列答案
相关题目