题目内容

如图,A、B是海面上位于东西方向相距5(3+
3
)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20
3
海里的C点的救援船立即前往营救,其航行速度为30海里/小时.求救援船直线到达D的时间和航行方向.
考点:解三角形的实际应用
专题:解三角形
分析:利用正弦定理
DB
sin45°
=
AB
sinD
,求出BD,在△DCB中,利用余弦定理求出CD,利用正弦定理求出∠DCB推出结果.
解答: 解:AB=5(3+
3
)
,∠D=105°,sinD=sin(60°+45°)=
6
+
2
4

DB
sin45°
=
AB
sinD

得BD=10
3
…(4分)
在△DCB中,BC=20
3
,∠DBC=60°
CD=
(20
3
)
2
+(10
3
)
2
-2•20
3
•10
3
1
2
=30

∴救援船到达D的时间为
30
30
=1
小时…(8分)
BD
sinDCB
=
CD
sin60°
sin∠DCB=
1
2

∠DCB=30°
∴救援船的航行方向是北偏东30°的方向.…(12分)
点评:本题考查正弦定理以及余弦定理的应用,解三角形的时间问题的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网