题目内容

已知函数f(x)
13
ax3+bx2+x+3
,其中a≠0.
(1)当a,b满足什么条件时,f(x)取得极值?
(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.
分析:(1)对函数求导,由题意可得f′(x)=0有解,由a≠0,分a>0,a<0讨论可求解
(2)f(x)在区间(0,1]上单调递增,可得f′(x)≥0在[0,1]上恒成立,从而转化为求函数的最值,可求解.
解答:解:(1)由已知得f′(x)=ax2+2bx+1,
令f′(x)=0,得ax2+2bx+1=0,
f(x)要取得极值,方程ax2+2bx+1=0,必须有解,
所以△=4b2-4a>0,即b2>a,
此时方程ax2+2bx+1=0的根为
x1=
-2b-
4b2-4a
2a
=
-b-
b2-a
a
,x2=
-2b+
4b2-4a
2a
=
-b-+
b2-a
a

所以f′(x)=a(x-x1)(x-x2
当a>0时,
精英家教网
所以f(x)在x1,x2处分别取得极大值和极小值.
当a<0时,
精英家教网
所以f(x)在x1,x2处分别取得极大值和极小值.
综上,当a,b满足b2>a时,f(x)取得极值.
(2)要使f(x)在区间(0,1]上单调递增,需使f′(x)=ax2+2bx+1≥0在(0,1]上恒成立.
即b≥-
ax
2
-
1
2x
,x∈(0,1]恒成立,
所以b≥-(-
ax
2
-
1
2x
max

设g(x)=-
ax
2
-
1
2x
,g′(x)=-
a
2
+
1
2x2
=
a(x2-
1
a
2x2

令g′(x)=0得x=
1
a
或x=-
1
a
(舍去),
当a>1时,0<
1
a
<1,当x∈(0,
1
a
]时g′(x)>0,g(x)=-
ax
2
-
1
2x
单调增函数;
当x∈(
1
a
,1]时g′(x)<0,g(x)=-
ax
2
-
1
2x
单调减函数,
所以当x=
1
a
时,g(x)取得最大,最大值为g(
1
a
)=-
a

所以b≥-
a

当0<a≤1时,
1
a
≥1,
此时g′(x)≥0在区间(0,1]恒成立,
所以g(x)=-
ax
2
-
1
2x
在区间(0,1]上单调递增,当x=1时g(x)最大,最大值为g(1)=-
a+1
2

所以b≥-
a+1
2

综上,当a>1时,b≥-
a

0<a≤1时,b≥-
a+1
2
点评:本题考查了函数极值取得的条件,函数的单调区间问题:由f′(x)>0,解得函数的单调增区间;反之函数在[a,b]上单调递增,则f′(x)≥0恒成立,进而转化为求函数在区间[a,b]上的最值问题,体现了分类讨论及转化思想在解题中的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网