题目内容

7.过定点(-2,0)的直线l与曲线C:(x-2)2+y2=4(0≤x≤3)交于不同的两点,则直线l的斜率的取值范围是$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

分析 画出图形,判断直线与曲线有两个交点的范围即可.

解答 解:过定点(-2,0)的直线l与曲线C:(x-2)2+y2=4(0≤x≤3)交于不同的两点,如图:
可得:k∈[kBQ,kAQ).
B(3,$\sqrt{3}$),kBQ=$\frac{\sqrt{3}-0}{3+2}$=$\frac{\sqrt{3}}{5}$,
|AQ|=$\sqrt{16-4}$=2$\sqrt{3}$,kAQ=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
由对称性可知:直线的斜率的范围:$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.
故答案为:$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

点评 本题考查直线与曲线交点问题,考查数形结合以及转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网