题目内容

4.已知等差数列{an}的公差d>0,a3=-3,a2a4=5,则an=2n-9;记{an}的前n项和为Sn,则Sn的最小值为-16.

分析 等差数列{an}的公差d>0,a3=-3,a2a4=5,可得$\left\{\begin{array}{l}{{a}_{1}+2d=-3}\\{({a}_{1}+d)({a}_{1}+3d)=5}\end{array}\right.$,解得d,a1.即可得出.

解答 解:等差数列{an}的公差d>0,a3=-3,a2a4=5,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=-3}\\{({a}_{1}+d)({a}_{1}+3d)=5}\end{array}\right.$,解得d=2,a1=-7.
∴an=-7+2(n-1)=2n-9.
令an≤0,解得n≤4.
∴当n=4时,{an}的前n项和Sn取得最小值S4=4×(-7)+$\frac{4×3}{2}$×2=-16.

点评 本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网