题目内容

已知
a
=(cocx-sinx,2sinx),
b
=(cosx+sinx,
3
cosx)
,并且f(x)=
a
b

(1)求f(x)的最小正周期和单调递增区间;
(2)若f(x)=
10
13
x∈[-
π
4
π
6
]
,求sin2x的值.
考点:两角和与差的正弦函数,二倍角的正弦,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)化简可得f(x)的解析式,从而可求最小正周期,f(x)的单调递增区间.
(2)先求sin(2x+
π
6
),cos(2x+
π
6
),即可求出sin2x的值.
解答: 解:(1)由已知得f(x)且f(x)=
a
b
=cos2x-sin2x+2
3
sinxcosx

=cos2x+
3
sin2x=2sin(2x+
π
6
)
,…(3分)
f(x)的最小正周期T=
2
.…(4分)
2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z,
可得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
则f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
]
(k∈Z,).…(6分)
(2)由f(x)=
10
13
sin(2x+
π
6
)=
5
13
,…(7分)
x∈[-
π
4
π
6
]
,可得2x+
π
6
∈[-
π
3
π
2
]

所以cos(2x+
π
6
)=
1-sin2(2x+
π
6
)
=
12
13
,…(9分)
所以sin2x=sin(2x+
π
6
-
π
6
)=sin(2x+
π
6
)cos
π
6
-cos(2x+
π
6
)sin
π
6

=
5
13
×
3
2
-
12
13
×
1
2
=
5
3
-12
26
.…(12分)
点评:本题主要考查了两角和与差的正弦函数,二倍角的正弦公式的应用,三角函数的周期性及其求法,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网