题目内容
不等式组
|
分析:画出可行域,将目标函数变形为y=-
x+
,画出相应的直线,将直线平移至点A时,纵截距最大,z最大,由两直线方程联立求出点坐标.
| 3 |
| 5 |
| z |
| 5 |
解答:
解:画出可行域,将z=3x+5y变形为y=-
x+
,
画出其图象,将其平移至点A,时纵截距最大,z最大
由
得A(
,
),
故答案为(
,
)
| 3 |
| 5 |
| z |
| 5 |
画出其图象,将其平移至点A,时纵截距最大,z最大
由
|
| 5 |
| 2 |
| 1 |
| 2 |
故答案为(
| 5 |
| 2 |
| 1 |
| 2 |
点评:本题考查画出不等式的可行域;画出目标函数对应的直线,数形结合求出目标函数的最值.
练习册系列答案
相关题目