题目内容

7.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

分析 (Ⅰ)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(Ⅱ)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,可求出f(x)的最大值和最小值.

解答 解:(Ⅰ)已知函数函数f(x)=cos2x+$\sqrt{3}$sinxcosx.
化解可得:f(x)=$\frac{1}{2}+\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x$+\frac{π}{6}$)$+\frac{1}{2}$
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$
由$2kπ-\frac{π}{2}≤$2x$+\frac{π}{6}$$≤\frac{π}{2}+2kπ$,(k∈Z)
解得:$kπ-\frac{π}{3}$≤x≤$kπ+\frac{π}{3}$.
∴函数f(x)的单调递增区间为:[$kπ-\frac{π}{3}$,$kπ+\frac{π}{3}$],(k∈Z)
(Ⅱ)由(Ⅰ)知f(x)=sin(2x$+\frac{π}{6}$)$+\frac{1}{2}$
当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,
可得:$-\frac{π}{6}$≤2x$+\frac{π}{6}$$≤\frac{5π}{6}$
所以$-\frac{1}{2}+\frac{1}{2}≤$sin(2x$+\frac{π}{6}$)$+\frac{1}{2}$$≤1+\frac{1}{2}$.即0≤f(x)$≤\frac{3}{2}$
故得f(x)在区间在[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值为$\frac{3}{2}$,最小值为0.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网