ÌâÄ¿ÄÚÈÝ
ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖÐ×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØÏµÎªf£¨x£©=|
sin
x+
-a|+2a£¬x¡Ê[0£¬24]£¬ÆäÖÐaΪÓëÆøÏóÓйصIJÎÊý£¬ÇÒa¡Ê[
£¬
]£®Èô½«Ã¿ÌìÖÐf£¨x£©µÄ×î´óÖµ×÷Ϊµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨¢ñ£©Áît=
sin
x£¬x¡Ê[0£¬24]£¬ÇótµÄȡֵ·¶Î§£»
£¨¢ò£©Çóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©Îª¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊĿǰÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊÇ·ñ³¬±ê£¿
| 1 |
| 2 |
| ¦Ð |
| 32 |
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 4 |
£¨¢ñ£©Áît=
| 1 |
| 2 |
| ¦Ð |
| 32 |
£¨¢ò£©Çóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©Îª¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊĿǰÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊÇ·ñ³¬±ê£¿
·ÖÎö£º£¨I£©ÀûÓÃÕýÏÒº¯ÊýµÄÐÔÖÊ£¬¿ÉÇótµÄȡֵ·¶Î§£»
£¨¢ò£©·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
£¬ËüСÓÚ2£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨¢ò£©·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
| 23 |
| 12 |
½â´ð£º½â£º£¨¢ñ£©ÒòΪx¡Ê[0£¬24]£¬ËùÒÔ
¡Ê[0£¬
]£¬ËùÒÔsin(
)¡Ê[0£¬1]£¬¹Êt¡Ê[0£¬
]£®
£¨¢ò£©ÒòΪa¡Ê[
£¬
]£¬ËùÒÔ0¡Üa-
¡Ü
£¼
£¬
ËùÒÔf(t)=|t-(a-
)|+2a=
£®
µ±t¡Ê[0£¬a-
]ʱ£¬f(t)max=f(0)=3a-
£»
µ±t¡Ê[a-
£¬
]£¬f(t)max=f(
)=
+a£®
¶øf(0)-f(
)=2a-
£¬
µ±
¡Üa¡Ü
£¬f(0)¡Üf(
)£¬M(a)=f(
)=
+a£»
µ±
£¼a¡Ü
£¬f(0)£¾f(
)£¬M(a)=f(0)=3a-
£®
ËùÒÔM(a)=
£¬
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
£¬ËüСÓÚ2£¬ËùÒÔĿǰÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýûÓг¬±ê£®
| ¦Ðx |
| 32 |
| 3¦Ð |
| 4 |
| ¦Ðx |
| 32 |
| 1 |
| 2 |
£¨¢ò£©ÒòΪa¡Ê[
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 3 |
| 5 |
| 12 |
| 1 |
| 2 |
ËùÒÔf(t)=|t-(a-
| 1 |
| 3 |
|
µ±t¡Ê[0£¬a-
| 1 |
| 3 |
| 1 |
| 3 |
µ±t¡Ê[a-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 6 |
¶øf(0)-f(
| 1 |
| 2 |
| 7 |
| 6 |
µ±
| 1 |
| 3 |
| 7 |
| 12 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 6 |
µ±
| 7 |
| 12 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
ËùÒÔM(a)=
|
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
| 23 |
| 12 |
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿