题目内容
在数列{an}中,a1=1,an+1=(1+| 1 |
| n |
| n+1 |
| 22 |
(Ⅰ)若bn=
| an |
| n |
(Ⅱ)设数列{an}的前n项和为Sn,试求Sn.
分析:解:(Ⅰ)由bn=
知,bn+1=
=
+
=bn+
,所以bn+1-bn=
,b2-b1=
,b3-b2=
,b4-b3=
,b5-b4=
,…,bn-bn-1=
,用累加法能够求出数列{bn}的通项公式.
(Ⅱ)an=(2-
)n,an的前n项和Sn=2(1+2++n)-(1+
+
+
++
),令T n=1+
+
+
++
,用错位相减法能够求出Sn.
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
(Ⅱ)an=(2-
| 1 |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
解答:解:(Ⅰ)由bn=
知,bn+1=
=
+
=bn+
,
∴bn+1-bn=
(1分)
∴b2-b1=
,b3-b2=
,b4-b3=
,b5-b4=
,,bn-bn-1=
(3分)
∴bn=1+
+
+
+
++
=2(1-
)(6分)
(Ⅱ)an=(2-
)n,an的前n项和Sn=2(1+2++n)-(1+
+
+
++
)(7分)
令T n=1+
+
+
++
则
T n=
+
+
+
++
T n=1+
+
+
++
-
=2(1-
)-
∴Tn=4-
(11分)
∴Sn=n(n+1)+
-4(13分)
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 2n |
| 1 |
| 2n |
∴bn+1-bn=
| 1 |
| 2n |
∴b2-b1=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
∴bn=1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
(Ⅱ)an=(2-
| 1 |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
令T n=1+
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
| 1 |
| 2n |
| n |
| 2n |
∴Tn=4-
| n+2 |
| 2n-1 |
∴Sn=n(n+1)+
| n+2 |
| 2n-1 |
点评:第(Ⅰ)题考查数列通项公式的求法,解题时要注意累加法的运用;第(Ⅱ)考查数列前n项和的应用,解题时要注意错位相减法的应用.
练习册系列答案
相关题目