题目内容
16.已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:9075 9660 1918 9257 2716 9325 8121 4589 5690 6832
4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
据此估计,该运动员四次投篮恰有两次命中的概率为0.35.
分析 由题意得20组机数中,该运动员四次投篮恰有两次命中的有7个,据此能求出该运动员四次投篮恰有两次命中的概率.
解答 解:由题意得20组机数中,
该运动员四次投篮恰有两次命中的有:
1918,2716,9325,6832,2573,3937,4882,共7个,
据此估计,该运动员四次投篮恰有两次命中的概率为p=$\frac{7}{20}=0.35$.
故答案为:0.35.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
13.函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的单调递增区间是( )
| A. | (-∞,-1),(0,+∞) | B. | (-∞,-1)∪(0,+∞) | C. | (-1,0) | D. | (-∞,0),(1,+∞) |
11.已知命题p:?x0∈R,使log2x0+x0=2017成立,命题q:?a∈(-∞,0 ),f(x)=|x|-ax(x∈R)为偶函数,则下列命题为真命题的是( )
| A. | p∧q | B. | ?p∧q | C. | p∧?q | D. | ?p∧?q |
1.某种产品的广告费用支出x(千元)与销售额y(10万元)之间有如下的对应数据:
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额y关于费用支出x的线性回归方程$\stackrel{∧}{y}$=bx+a
| x | 2 | 4 | 5 | 6 | 8 |
| y | 3 | 4 | 6 | 5 | 7 |
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额y关于费用支出x的线性回归方程$\stackrel{∧}{y}$=bx+a
| 不得禽流感 | 得禽流感 | 总计 | |
| 服药 | |||
| 不服药 | |||
| 总计 |
8.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{{S}_{4}}{{a}_{4}}$=( )
| A. | 2 | B. | 4 | C. | $\frac{15}{8}$ | D. | $\frac{17}{8}$ |
5.学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an,bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=( )
| A. | 260 | B. | 280 | C. | 300 | D. | 320 |
6.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是( )
| A. | r越大,两变量的线性相关性越强 | B. | R2越大,两变量的线性相关性越强 | ||
| C. | r的取值范围为(-∞,+∞) | D. | R2的取值范围为[0,+∞) |