题目内容

18.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;
(2)求证:平面PAC⊥平面BDE.

分析 (1)连接OE,由中位线定理可知PA∥OE,故而PA∥面BDE;
(2)由BD⊥OP,BD⊥AC得出BD⊥平面PAC,从而得出平面PAC⊥平面BDE.

解答 证明:(1)连接OE,
∵ABCD是正方形,O是正方形的中心,
∴O是AC的中点,又E是PC的中点,
∴OE∥PA,
又PA?平面BDE,OE?平面BDE,
∴PA∥面BDE.
(2)∵PO⊥底面ABCD,BD?平面ABCD,
∴PO⊥BD,
∵ABCD是正方形,
∴AC⊥BD,
又PO?平面PAC,AC?平面PAC,PO∩AC=O,
∴BD⊥平面PAC,
又BD?平面BDE,
∴平面PAC⊥平面BDE.

点评 本题考查了线面平行,线面垂直的判定,面面垂直的判定,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网