题目内容
表面积为S的多面体每一个面都外切于半径为R的一个球,则这个多面体的体积为
SR .
甲、乙两人一起到阿里山参观旅游,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们同在一个景点的概率是( )
A. B.
C. D.
若α,β是两个不同的平面,下列四个条件:
①存在一条直线a,a⊥α,a⊥β;
②存在一个平面γ,γ⊥α,γ⊥β;
③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;
④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.
那么可以是α∥β的充分条件有( C )
A. 4个 B. 3个 C. 2个 D. 1个
若A(﹣2,3)、B(3,﹣2)、C(,m﹚三点在同一直线上,则m的值为( )
A. ﹣2 B. 2 C. ﹣ D.
三个球的半径之比是1:2:3 则最大球的体积是其余两个球的体积之和的( )
A. 4倍 B. 3倍 C. 2倍 D. 1倍
抛掷一枚骰子,当它每次落地时,向上一面的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果.连续抛掷两次,第一次抛掷的点数记为a,第二次抛掷的点数记为b.
(1)求直线ax+by=0与直线x+2y+1=0平行的概率;
(2)求长度依次为a,b,2的三条线段能构成三角形的概率.
设a=log36,b=log510,c=log714,则( )
A. c>b>a B. b>c>a C. a>c>b D. a>b>c
已知函数f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的范围
定义在R上的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)( )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数