题目内容
9.某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有( )| A. | 27种 | B. | 30种 | C. | 33种 | D. | 36种 |
分析 甲和丙同地,甲和乙不同地,所以有2、2、1和3、1、1两种分配方案,再根据计数原理计算结果.
解答 解:因为甲和丙同地,甲和乙不同地,所以有2、2、1和3、1、1两种分配方案,
①2、2、1方案:甲、丙为一组,从余下3人选出2人组成一组,然后排列:
共有:C32×A33=18种;
②3、1、1方案:在丁、戊中选出1人,与甲丙组成一组,然后排列:
共有:C21×A33=12种;
所以,选派方案共有18+12=30种.
故选:B.
点评 本题考查了分类技术原理,关键是分类,属于中档题.
练习册系列答案
相关题目
19.cosasin(a+$\frac{π}{6}$)+sinasin(a-$\frac{π}{3}$)=( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
17.点P在直线3x+4y-10=0上,过点P作圆x2+y2=1的切线,切点为M,则$\overrightarrow{PM}$•$\overrightarrow{PO}$(O是坐标原点)的最小值是( )
| A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 3 |
4.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的( )
| A. | 充分必要条件 | B. | 必要不充分条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
14.已知数列{an}是等比数列,若a2=2,a3=-4,则a5等于( )
| A. | 8 | B. | -8 | C. | 16 | D. | -16 |
18.如果点P(x,y)在平面区域$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$上,则x2+(y+1)2的最大值和最小值分别是( )
| A. | 3,$\frac{3}{{\sqrt{5}}}$ | B. | 9,$\frac{9}{5}$ | C. | 9,2 | D. | 3,$\sqrt{2}$ |