题目内容

已知a>0,b>0,a+b=1,求证:+≤2.

思路解析:可以考虑综合法,变形以后灵活地运用均值定理.

证法一:+=

===2.

证法二:∵1=a+b≥2,∴ab≤.

∴ab+(a+b)+≤1,即≤1.

从而2+2≤4,即a++b++2≤4.

∴(+)2≤4.∴+≤2.

证法三:利用均值定理,得

+≤2=2

=2=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网