题目内容
在数列{an}中,a1=1,an-an-1=
,则an=( )
| 1 |
| n(n-1) |
分析:累加法:先变形得,an-an-1=
=
-
,由an=a1+(a2-a1)+(a3-a2)+…+(an-an-1),可得an(n≥2),注意检验a1是否适合.
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:an-an-1=
=
-
,
则a2-a1=1-
,a3-a2=
-
,a4-a3=
-
,…an-an-1=
-
,
以上各式相加得,an-a1=1-
,所以an=2-
(n≥2),
又a1=1,所以an=2-
,
故选A.
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
则a2-a1=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
以上各式相加得,an-a1=1-
| 1 |
| n |
| 1 |
| n |
又a1=1,所以an=2-
| 1 |
| n |
故选A.
点评:本题考查由数列递推式求数列通项,若递推式为:an+1-an=f(n),则{an}通项往往用累加法求解.
练习册系列答案
相关题目