题目内容
已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
,求数列{cn}的前n项和Sn.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
| 1 |
| 2 |
(Ⅰ)设等差数列{an}的公差为d,
首项a1=1,b1=2,b2=2+d,b3=4+2d,
∵{bn}为等比数列,∴
=b1b3,
即(2+d)2=2(4+2d),解得d=±2,
又∵an+1>an,即数列{an}为单调递增数列,
∴d=2,a2=3,a3=5,∴an=a1+(n-1)d=2n-1,
则b1=2,b2=4,q=2,
∴bn=b1qn-1=2n,
∴an=2n-1,bn=2n,
(Ⅱ)由题意得,(an+3)cnlog2bn=
,再由(1)结果代入,
变形得cn=
=
=
(
-
),
∴Sn=
(
-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(
-
)=
.
首项a1=1,b1=2,b2=2+d,b3=4+2d,
∵{bn}为等比数列,∴
| b | 22 |
即(2+d)2=2(4+2d),解得d=±2,
又∵an+1>an,即数列{an}为单调递增数列,
∴d=2,a2=3,a3=5,∴an=a1+(n-1)d=2n-1,
则b1=2,b2=4,q=2,
∴bn=b1qn-1=2n,
∴an=2n-1,bn=2n,
(Ⅱ)由题意得,(an+3)cnlog2bn=
| 1 |
| 2 |
变形得cn=
| 1 |
| 2(an+3)log2bn |
| 1 |
| 2n(2n+2) |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| n |
| 4(n+1) |
练习册系列答案
相关题目
已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{
}的前5项和为( )
| 1 |
| an |
A、
| ||
B、
| ||
C、
| ||
D、
|