题目内容
若圆锥的侧面积为,底面面积为,则该圆锥的体积为 .
已知函数.
(1)若,求函数的单调区间;
(2)若关于x的不等式在区间[1,2]上有解,求m的取值范围;
(3)设是函数的导函数,是函数的导函数,若函数的零点为,则点恰好就是该函数的对称中心.若m=1,试求的值.
设满足约束条件,则目标函数的取值范围是___________.
定义在上的函数满足:对,都有;当时,,给出如下结论:其中所有正确结论的序号是: .
①对,有;
②函数的值域为;
③存在,使得;
④函数在区间单调递减的充分条件是“存在,使得”.
将函数的图象向左平移个单位,所得到的函数图象关于轴对称,则的一个可能取值为( )
A. B. C.0 D.
二次函数的对称轴为,则当时,的值为( )
A.-7 B.1 C.17 D.25
已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2.
(1)求函数y=f(x)的解析式.
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
下列命题中的说法正确的是
A.若向量,则存在唯一的实数使得;
B.命题“若,则”的否命题为“若,则”;
C.命题“,使得”的否定是:“,均有”;
D.“且”是“”的不充分也不必要条件;