搜索
题目内容
设A={x|x>0},B={x|x<1},则A∩B=
[ ]
A.{x|0<x<1}
B.{x|x<1}
C.{x|x<0}
D.R
试题答案
相关练习册答案
A
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
设
h(x)=x+
m
x
,
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f
1
(x)=minf(t)|a≤t≤x(x∈[a,b]),f
2
(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f
1
(x)=cosx,x∈[0,π],f
2
(x)=1,x∈[0,π].
(理)当m=1时,设
M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M
1
(x)-M
2
(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h
1
(x)-h
2
(x)|≤n恒成立,求n的取值范围.
设A={x|x=a
2
+b
2
,a,b∈Z},求证:
(1)若s,t∈A,则st∈A.
(2)若
s,t∈A,t≠0,则
s
t
=
p
2
+
q
2
,其中p,q是有理数.
设A={x|x+2≥0},B={x∈N
*
|2x-3≤0},则A∩B=( )
A.
{x|-2≤x≤
3
2
}
B.{1}
C.{-2,-1,0,1}
D.
{x|0≤x≤
3
2
}
(2008•西城区二模)设全集I=R,A={x|x<0},集合B={x||x|>1},则集合A∩(?
I
B)等于( )
A.?
B.{x|-1≤x<0}
C.{x|0<x≤1}
D.{x|-1≤x≤1}
设A={x||x-1|<2},B={x|
>0},则A∩B等于( )
A.{x|-1<x<3}
B.{x|x<0或x>2}
C.{x|-1<x<0}
D.{x|-1<x<0或2<x<3}
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案